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A B S T R A C T   

Objective: Oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) can go 
undetected resulting in late detection and poor outcomes. We describe the development and validation of 
CancerDetect for Oral & Throat cancer™ (CDOT), to detect markers of OSCC and/or OPSCC within a high-risk 
population. 
Material and methods: We collected saliva samples from 1,175 individuals who were 50 years or older, or adults 
with a tobacco use history. 945 of those were used to train a classifier using machine learning methods, resulting 
in a salivary microbial and human metatranscriptomic signature. The classifier was then independently validated 
on the 230 remaining samples prospectively collected and unseen by the classifier, consisting of 20 OSCC (all 
stages), 76 OPSCC (all stages), and 134 negatives (including 14 pre-malignant). 
Results: On the validation cohort, the specificity of the CDOT test was 94 %, sensitivity was 90 % for participants 
with OSCC, and 84.2 % for participants with OPSCC. Similar classification results were observed among people in 
early stage (stages I & II) vs late stage (stages III & IV). 
Conclusions: CDOT is a non-invasive test that can be easily administered in dentist offices, primary care centres 
and specialised cancer clinics for early detection of OPSCC and OSCC. This test, having received FDA’s break-
through designation for accelerated review, has the potential to enable early diagnosis, saving lives and 
significantly reducing healthcare expenditure.   

Introduction 

Oral cancer is the seventh-most common neoplasm and the ninth 
most common cause of cancer related death globally [1]. The American 
Cancer Society estimates about 54,000 new cases of oral cancer, leading 
to 11,230 deaths, in the United States in 2022 [2]. More than half of oral 
cancers in the world occur in Asia, in South/Southeast Asia, oral cancer 

is one of the top three cancers [3]. Oral squamous cell carcinoma (OSCC) 
is the most common oral cancer, accounting for 2 % of all cancers and 
with a high recurrence rate even with treatment [4]. Oropharyngeal 
squamous cell carcinoma (OPSCC), commonly known as throat cancer, 
is currently emerging in the developed world, and shares a similar 
clinical management than OSCC in primary care centres. For example, 
dentists perform a visual and tactile examination for oral cavity cancer, 
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and in the same session, also palpate the neck, chin, tongue, and scan for 
lumps in the throat, which are indicative of oropharyngeal cancer. 
Following that exam, primary care providers will, typically, send the 
patient to an ENT specialist or an oral surgeon, who will do the definitive 
diagnostic and treatment planning. While OPSCC shares similar etio-
logic factors with OSCC like smoking history or alcohol consumption, 
OPSCC is also highly associated with HPV, which makes this cancer 
biologically and clinically different [5–7]. 

Survival rates of OPSCC and OSCC patients vary based on stage at the 
time of diagnosis and disease progression [8]. The five-year overall 
survival rate in the U.S. for OSCC is 84 %, if diagnosed in the early stages 
of the disease (i.e., Stage I or II). However, more than 70 % of OSCC 
diagnoses are not made until the disease is in stage III or IV. At these 
later stages, the five-year survival rate, for OSCC specifically, drops to 
less than 50 % [9]. Research has shown that the reasons for late diag-
nosis are layered and complicated, including under-utilisation of dental 
and primary care, and the lack and poor quality of oral cancer screening 
in patients that do seek general care [10]. Most importantly, in the 
earliest, most treatable stages, many oral cancers have little to no 
symptoms and may not be easily visible [11,12]. 

The current standard of care for oral cancer screening and diagnosis 
relies on a physical exam, identification of lesion(s), followed by im-
aging, invasive biopsy and histopathological evaluation. Biopsies will 
only sample a limited amount of cancer tissue and heterogeneity within 
the cancer is not accounted for. There are no oral cancer screening 
guidelines published either from the American Cancer Society, the Na-
tional Comprehensive Cancer Network (NCCN), or the National Cancer 
Institute. The only recommendation that exists for oral cancer is in the 
form of a resolution passed by the American Dental Association in 2019 
recommending dentists to conduct routine visual and tactile examina-
tions for oral and oropharyngeal cancer for all patients [13], but with no 
objective criteria. However, only 29.4 % of adults in the United States 
reported ever having received a visual and tactile examination for OSCC 
or OPSCC [14]. Patients referred for biopsies run the risk of hematoma at 
the biopsy site, or worse, increased risk of metastasis if cancer cells are 
disseminated into the bloodstream [15]. Moreover, the standard biopsy 
techniques may not be appropriate for all patients, including those with 
conditions that preclude the safe use of local anaesthetic and those with 
severe bleeding diathesis or coagulopathies [14]. 

Even though tobacco consumption, alcohol abuse and poor oral hy-
giene remain the major risk factors for oral cancer, there has been 
increasing evidence to suggest that people who are not exposed to these 
risk factors are also affected. Dysbiosis in the oral microbiome leads to a 
chronic inflammatory state, suppresses anti-tumor immunity, and leads 
to the creation of novel mutagens [16]. One of the examples supporting 
this evidence is periodontitis, which is associated with an increased risk 
for cancer and poor survival in many studies [17,18]. Streptococcus, 
Fusobacterium, Capnocytophaga, Prevotella, among other bacteria are 
shown to be increased in OSCC [19–22]. Changes in microbiota have 
been observed in throat cancer patients as well [16]. This provides the 
scientific evidence to further explore microbial organisms and functions 
in the saliva as a means of developing a tool to evaluate oral and throat 
cancers. 

Previously we developed a classifier for the detection of OSCC using 
only microbial expression on a smaller cohort [23]. In this current study, 
we incorporate both OSCC and OPSCC, include human gene expression 
in addition to microbial expression, and expand the studied cohort 
significantly. The resulting test, CancerDetect for Oral & Throat Can-
cer™ [CDOT], built using salivary metatranscriptomics and validated 
with an independent cohort, was granted breakthrough designation for 
accelerated review by the Food and Drug Administration (FDA) in April 
2021. While this test can fit different intended uses, for this validation 
study we have only recruited people older than 50 or with a history of 
tobacco use, targeting people at a high risk for developing oral or throat 
cancer. This study was reported in format according to the Standards for 
Reporting Diagnostic Accuracy (STARD) 2015 statement. 

Materials and methods 

Test description 

We have developed a simple cancer detection test as shown in Fig. 1, 
consisting of the following elements: (i) Sample collection/transport, (ii) 
Lab Processing (iii) Data Processing, and Test Report. 

(i) Sample collection and transport. Unstimulated whole mouth 
saliva samples were collected as published previously [23]. The collec-
tion tube contains a preservative that dissolves cell membranes and 
penetrates all cells, denatures nucleases, and prevents RNA self-cleaving 
by preventing deprotonation of the 2′-OH. The use of this proprietary 
preservative enables ambient temperature transportation for saliva 
samples. Saliva sample collection, preservation, transportation and lab 
preparation are described in Banavar et al. 

(ii) Lab processing. Our CLIA-certified lab receives the saliva sam-
ples and processes it to extract and sequence the RNA from the saliva 
sample. Our test extracts and sequences all mRNA molecules in a non- 
discriminatory fashion, after eliminating the non-informative rRNA 
molecules. After sample preparation is completed in the Lab, total RNA 
is extracted from clarified lysate using a custom silica bead-based pro-
tocol, which includes on-bead DNA removal by DNase. Total RNA is 
quantified using the RiboGreen method and diluted when necessary. 
Bacterial and human rRNAs are physically removed from the specimen 
using a subtractive hybridization method. The remaining RNAs are 
converted into Illumina directional sequencing libraries [24]. Library 
pools are then sequenced on Illumina NovaSeq 6000 to produce 
sequencing data. 

(iii) Data processing. The sequenced data is processed through our 
bioinformatics pipeline and an OSCC/OPSCC classifier. The bioinfor-
matics pipeline maps sequenced reads to human genes (or HG), as well 
as microbial species (or SP) and microbial gene clusters annotated as 
KEGG Orthologs (or KO) [23]. For HG detection, paired-end reads are 
mapped to the human transcriptome. Gene expression levels are 
computed by collecting the transcript-level abundance (transcript per 
million - TPM) and then aggregating them to the gene level using Salmon 
version 1.1.0 [25]. For taxonomic classification, reads are mapped to a 
custom catalogue derived from genomic sequences from all domains of 
the phylogenetic tree, namely, bacteria, archaea, eukaryota, and viruses. 
Taxonomies are identified and their relative activities are calculated at 
three different taxonomic ranks (genus, species, and strain). To identify 
and quantify transcriptionally active genes in the microbial community, 
functional assignments are obtained through alignment of the 
sequencing reads to another custom curated catalogue of genes and the 
KEGG databases [26]. Further details of the bioinformatics processing 
can be found in Banavar et al. [23]. All the detected molecular features 
(HG, SP, and KO features) are then used for downstream analyses 
including classifier development, validation, and eventually, classifica-
tion of new samples. 

The OSCC/OPSCC classifier is a machine-learning (ML) model that 
uses the HG, SP, and KO features and classifies the sample as belonging 
to the “OSCC/OPSCC class” or the “Not OSCC/OPSCC class” within pre- 
specified performance criteria. The overall workflow of classification 
model development and independent validation is shown in Fig. 2. 
Model development is described in detail in the Supp. Table 1 and Supp. 
Fig. 1a and 1b. The threshold was selected during the model develop-
ment and further applied during the independent validation. We per-
formed cross validation with several hyperparameters, including the 
threshold. In particular, we looked at 20 evenly spaced values between 
0.001 and 0.99 and the threshold that maximised the sum of specificity 
and specificity was considered. The final trained model coming out of 
the development phase was determined to be capable of inferring, at a 
high probability, whether a participant’s sample has OSCC and/or 
OPSCC or not, and used for independent validation with unseen sam-
ples, on the other side of the “firewall” in Fig. 2. 
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Patient population 

The CDOT test was developed with samples from a cohort of 945 
individuals (details in the supporting information), and validated in an 
unseen independent cohort of 230 individuals in order to evaluate its 
performance in the proposed intended use. 

Validation study participants were either 50 years or older or had a 
history of tobacco use. Having a “history of tobacco use” included being 
a current or former tobacco user per the Affordable Care Act (ACA) 
definition. A current tobacco user was defined as someone who uses 
tobacco products four or more times per week in the past six months. A 
former tobacco user is a person who has quit using tobacco products at 
the current time but had previously used tobacco products four or more 
times per week for six months or more, within the last 20 years. For 
purposes of this study, we defined tobacco broadly consistent with 
definitions for multiple health organisations, including the World Health 
Organization (WHO), which defines “tobacco use” to include smoking, 
sucking, chewing or snuffing any tobacco product. 

The validation cohort of 230 included 101 samples prospectively 
collected from the Royal Brisbane Women Hospital between October 
2012 and August 2019, and a combination of 129 clinically adjudicated 
patients with OPMD and cancer free patients from the Viome company 
customer database in the US (Table 1). Eligible participants had to be 
free from any active infection, have no cancer in the past, not be preg-
nant and have no irradiation to the neck and head region. The study was 
approved by the Queensland University of Technology and University of 
Queensland Medical Ethical Institutional Boards (HREC no.: 
1400000617 and HREC no.: 2017000662 respectively) and the Royal 

Brisbane and Women’s Hospital (HREC no.: HREC/12/QPAH/381) 
Ethics Review Board. All participants gave their consent to participate in 
the study. 

Patients with OSCC or OPSCC were clinically diagnosed by the AJCC 
8th edition to confirm their cancer status. Clinical data also included 
histopathology reports after biopsying the patients, spanning early 
(Stage I/II) and late (Stage III/IV) stage OSCC and OPSCC. OSCC and 
OPSCC diagnosis was performed with biopsy and examination of 
formalin-fixed paraffin-embedded (FFPE) tissue sections by routine 
(Hematoxylin and eosin) stain using standard methodology. Most pa-
tients with OPSCC (>97 %) were HPV positive as tested by salivary HPV- 
16 and published by our team [7,27–29]. Patients with oral premalig-
nant disorders (OPMD) or cancer-free participants could be clinically 
adjudicated by a primary physician. OPMD included the following 
conditions: dysplasia, hyperplasia, leukoplakia, erythroplakia, lichenoid 
lesions, actinic keratosis and lichenoid reaction; as well as canker sores, 

Fig. 1. Overview of salivary RNA metatranscriptomic signature based cancer detection system.  

Fig. 2. Model development, cross validation and independent validation workflow.  

Table 1 
Independent validation cohort (n = 230). OSCC, Oral squamous cell carcinoma; 
OPSCC, Oropharyngeal squamous cell carcinoma; OPMD, Oral premalignant 
disorder.   

Positives (n = 96) Negatives (n = 134) 
OSCC (n =
20) 

OPSCC (n =
76) 

OPMD (n =
14) 

Cancer free (n 
= 120) 

Female (n) 3 (15.0 %) 4 (5.3 %) 7 (50.0 %) 42 (35.0 %) 
Age (yrs) mean 
± SD 

61.3 ±
11.1 

60.9 ± 7.6 62.9 ± 15.9 60.5 ± 8.8  
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gingival enlargement as a result of a dental procedure, lichen planus, 
keratosis, inflammatory reaction and cheek bites. The list of pre- 
malignancies was suggested by dental surgeons who see patients with 
oral lesions in clinical practice. All patients were tested with CDOT 
before receiving any treatment. 

Results 

We evaluated the performance of the CDOT test using various met-
rics. Each participant sample was analysed using the classifier and the 
results were compared to the participant’s known or assumed (cancer- 
free volunteers were assumed to be cancer-free) cancer status to deter-
mine the classifier’s performance characteristics (Fig. 2). Specificity and 
sensitivity were also evaluated by disease stage (early vs late), smoking 
status (current, former, non-smoker and unknown) and age (<50 and 
≥50). 

Fig. 3a and 3b show the area under the receiver operating charac-
teristic (ROC) curve (ROC - AUC) and the distributions of the predicted 
probabilities for the model on the independent validation data set. The 
AUC is 96 %, indicating a probability of 0.96 that our classifier will rank 
a randomly chosen positive instance higher than a randomly chosen 
negative one (assuming ‘positive’ ranks higher than ‘negative’). 

Further, the OSCC-OPSCC classifier correctly classified 18/20 = 90 
% OSCC positive patients (sensitivity to OSCC), 64/76 = 84.2 % OPSCC 
positive patients (sensitivity to OPSCC) (Table 2a) and 126/134 = 94 % 
negative participants as no cancer (specificity no negative samples) 
(Table 2b). Out of the early stage participants with OSCC or OPSCC, the 
OSCC-OPSCC classifier was able to classify 9 out of the 10 as OSCC and 
51 out of 62 as OPSCC positive thereby demonstrating a reasonable 
expectation of clinical success in identifying participants with OSCC 
and/or OPSCC, including those with early-stage disease (Table 2a). Also, 
in Table 2b, we included the breakdown of the model’s specificity to 
negative samples. 

We stratified the patient characteristics across the care centres used 
to source the patient samples for validation, to ensure that there was no 
bias. When evaluating the performance of the model by smoking status, 
the OSCC-OPSCC classifier correctly classified 100 % of the current 
smokers. Among former smokers, 7/8 = 87.5 % OSCC and 35/41 (85.4 
%) OPSCC were correctly classified as positives. Among non-smokers, 4/ 
4 = 100 % OSCC and 13/17 (76.5 %) OPSCC were correctly classified as 
positives (Table 2c). 

When evaluating the performance of the model by age, among 
people below 50 years old, 4/4 = 100 % of people with OSCC and 2/3 =
66.7 % of people with OPSCC were correctly classified as positives. 
Among older people, 15/17 = 88.2 % OSCC and 62/73 (84.9 %) OPSCC 
were correctly classified as positives (Table 2d). Similarly, when strati-
fying the data by biological sex, we observed that the distribution of 
positive and negative samples across the disease state was in concor-
dance between male and female. 

An interference evaluation was also performed with 41 cancer free 
negative participants. Participants were required to chew gum, chew 
tobacco, and brush their teeth. These analyses determined whether 

Fig. 3a. ROC plot for the model on independent validation set.  

Fig. 3b. Predicted probabilities for all participants in the independent valida-
tion set. 

Table 2a 
Sensitivity (Positive percent agreement). OSCC, Oral squamous cell carcinoma; 
OPSCC, Oropharyngeal squamous cell carcinoma.   

n/N ( %) 
Overall sensitivity (TP/TP + FN) 82/96 (85.0 %) 95 % CI [76.7 %, 91.8 %] 
OSCC sensitivity 18/20 (90.0 %) 95 % CI [68.3 %, 98.8 %] 
OSCC Early stage 9/10 (90.0 %) 95 % CI [55.5 %, 99.7 %] 
OSCC Late stage 9/10 (90.0 %) 95 % CI [55.5 %, 99.7 %] 
OPSCC sensitivity 64/76 (84.2 %) 95 % CI [74.0 %, 91.6 %] 
OPSCC Early stage 51/62 (82.3 %) 95 % CI [70.5 %, 90.8 %] 
OPSCC Late stage 13/14 (92.9 %) 95 % CI [66.1 %, 99.8 %]  

Table 2b 
Specificity (Negative percent agreement). OPMD, Oral Premalignant Disorder.   

n/N ( %) 
Overall specificity (TN/TN + FP) 126/134 (94.0 %) 95 % CI [88.6 %–97.4 %] 
Cancer free 116/120 (96.7 %) 95 % CI [91.7 %, 99.1 %] 
OPMD 10/14 (71.4 %) 95 % CI [41.9 %, 91.6 %]  

Table 2c 
Sensitivity and specificity by smoking status. OSCC, Oral squamous cell carci-
noma; OPSCC, Oropharyngeal squamous cell carcinoma.   

Sensitivity (n/N) % Specificity (n/N) % 
OSCC OPSCC 

Current 6/6 (100 %) 
95 % CI [54.1 %, 
100.0 %] 

11/11 (100 %) 
95 % CI [71.5 %, 
100.0 %] 

2/4 (50 %) 
95 % CI [6.8 %, 93.2 
%] 

Former 7/8 (87.5 %) 
95 % CI [47.3 %, 
99.7 %] 

35/41 (85.4 %) 
95 % CI [70.8 %, 
94.4 %] 

5/7 (71.4 %) 
95 % CI [29.0 %, 
96.3 %] 

Non- 
smoker 

4/4 (100 %) 
95 % CI [39.8 %, 
100.0 %] 

13/17 (76.5 %) 
95 % CI [56.6 %, 
96.2 %] 

117/121 (97.7 %) 
95 % CI [91.8 %, 
99.1 %] 

Unknown 1/2 (50 %) 
95 % CI [1.3 %, 
98.7 %] 

5/7 (71.4 %) 
95 % CI [29.0 %, 
96.3 %] 

2/2 (100 %) 
95 % CI [15.8 %, 
100.0 %]  
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external interference factors influenced the detection power of the 
model. The probability output of the model did not change based on the 
presence of the different interfering substances, showing the robustness 
of the model to interferants (Supp. Fig. 2). 

Discussion 

This study evaluates the effectiveness of a saliva metatranscriptomic 
detection test, CDOT™, to identify individuals with OSCC and OPSCC. 
To evaluate its performance, the test result (negative or positive) was 
compared with the histopathological diagnosis of all significant lesions 
discovered during a biopsy. Based on this comparison, CDOT™ sensi-
tivity (true positive fraction) is 90 % for participants with a histopath-
ological diagnosis of OSCC and 84.2 % for participants with a diagnosis 
of OSPCC. The test can also detect true positives in early and late stages 
of OSCC with 90 % sensitivity. Furthermore, among participants having 
a valid oral cancer test result and a self-reported or clinically adjudicated 
cancer free status, specificity for cancer free patients not including 
OPMD is 96.7 %. The specificity or ability of the test to designate true 
negatives is 94 %. Having received FDA breakthrough for accelerated 
review, this test has the potential to be used for early screening in pri-
mary care settings and in secondary care centres, reducing the number 
of unnecessary biopsies under some scenarios, for example as a rule-in 
test for recurrence for patients who had oral cancer in the past. 

In routine clinical practice today, the diagnostic pathway for oral 
cancer is dependent on the experience and expertise of different 
healthcare providers (dentists, dental hygienists and primary physi-
cians) who are responsible for performing the head and neck visual 
examinations. Oral lesions that may be indicative of oral cancer include 
heterogeneous appearance such as changes in colour, texture and size; 
and alterations in the surface, for example, non-healing ulcerations. 
Several adjunct diagnostic tools are available to aid providers in iden-
tification and diagnosis, but there is no general consensus on which, if 
any, is most reliable. Examples are exfoliative cytology, including liquid- 
based, scraped and brush cytology [30,31], toluidine blue staining [32], 
and light-based visual detection systems [33]. The performance of these 
methods vary widely, with a pooled estimate of 88 % sensitivity and 81 
% specificity [34], which is a lower performance when compared to the 
proposed saliva-based detection test. 

With the advent of AI technologies, there are many new imaging 
methods introduced in the last decade [3510]. Fluorescent imaging is a 
non-invasive method supported with confocal laser endomicroscopy 
which has high magnification power [36] resulting in 92 % specificity, 
as well as the N2 laser study with 92 % specificity [37]. These laser 
technologies are still expensive and not readily available for primary 
care settings. In addition, there is significant upskilling required for 
thorough examination and the results might be operator dependent. 
Another example is the Oncogrid surveillance program [38] which uses 
mobile phones. While these methods are easily accessible, they may only 
be partially useful for certain low resource setting areas, as they have 
low sensitivity (around 70 %–85 %) based on limited access to certain 
areas of the mouth cavity [39,40]. 

Saliva is in direct contact with the tissues of the oral cavity and 
represents a biofluid that acts as a great substrate for liquid biopsy. The 
biomolecules detected by our metatranscriptomic method offer deep 
resolution and insight into the activity of the human genes as well as all 
the microbial species. Furthermore, our method uses advanced machine 
learning modelling to tease out the most distinguishing molecular fea-
tures associated with OSCC and/or OPSCC. Previous methods have 
either assessed biomolecules from the human side (e.g. CD44 protein 
[41] or RNA – 6 markers that include interleukins IL-1Beta, IL-8, 
OAZ1SAT1S100P, and DUSP1) [42] or difference in species with 16S 
rRNA gene sequencing and metagenomics [43,44], but their results are 
less promising, and while they have reported discovery results, they 
have not been validated in independent cohorts. If a secondary care 
specialist has a suspicion of cancer, the patient will undergo a biopsy, a 
common invasive procedure that remains the gold standard for diag-
nosing premalignant and malignant oral diseases. CDOT™ is non- 
invasive and can be easily included in secondary care practices to 
confirm the need for a biopsy. Oral biopsy involves both psychological 
implications for the patient and technical difficulties for the health 
practitioner. When lesions are extensive, the most representative areas 
must be selected to avoid diagnostic errors. In fact, inter- and intra- 
observer variability of histological diagnosis for dysplasia is well docu-
mented [45]. 

A useful diagnostic tool should be easy to use and cause minimal 
patient discomfort. Ideally, a diagnostic procedure should be neither 
time-consuming nor complicated and, in addition to high sensitivity, 
should have the potential for automation. High specificity also avoids 
false-positives and, therefore, reduces patient anxiety, additional in-
vestigations, and even unnecessary treatment. CDOT™ provides non- 
invasive information regarding a patient’s OSCC or OPSCC disease sta-
tus that can aid in seeking a definitive diagnosis and treatment planning. 
It offers significant advantages over existing alternatives because of its 
high sensitivity and specificity, and it has the potential to identify pa-
tients for additional follow-up before their disease has progressed to be 
apparent in visual/tactile exams (i.e., Stages I/II). 

We estimate the prevalence of oral cancer in the United States at 0.4 
%. With this prevalence, the Positive Predictive Value (PPV) for our test 
is 5.4 %, including both OSCC and OPSCC in the intended use. The 
corresponding negative predictive value (NPV) for our test is 99.9 %. 
Also, the positive likelihood ratio (LR+) of our test is 14.31 and the 
negative likelihood ratio (LR-) is 0.16. Since the inverse of negative 
likelihood ratio (6.25) is less than LR+, based on these data, we 
conclude that our test will be used as a rule-in test. 

An important goal of early detection of oral cancer is to shift from 
detection at Stage III/IV to detection at Stage I/II. We developed a 
cancer intercept micro-simulation model to evaluate the use of CDOT-
within a large intended use population using SEER data. In one simu-
lation, a cohort of 30-year-olds was generated, and cancers were allowed 
to develop up to age 50. At age 50, a one-time screen was applied, and 
the cohort was followed for 3 years. All detected cancers were treated 
with the standard of care using SEER-derived incidence rates. In this 
simulation, with a 5-year sojourn time (length of time the cancer re-
mains asymptomatic), we found that the proportion of early and late 
stage oral cancers in the no-screening scenario was 29 % and 71 % 
respectively, whereas in the one-time screening scenario using CDOTt 
was 56 % and 44 % respectively, resulting in 27 % of late-stage cases 
shifted to early stages. 

We recognize that there are some limitations to our study. While the 
model performs well in patients with OSCC and OPSCC and cancer free 
patients, the number of participants with pre-malignant diseases is 
currently too low to discriminate between positives and negatives. 
Similarly, the number of current and former smokers is low to make any 
conclusions about the model performance in these populations. The 
model was validated as well in young and older participants, however 
other populations at risk such as heavy drinkers and patients with HPV- 
OPSCC were not evaluated. Lastly, while the study participants were 

Table 2d 
Sensitivity and specificity by age group. OSCC, Oral squamous cell carcinoma; 
OPSCC, Oropharyngeal squamous cell carcinoma.   

Sensitivity (n/N) % Specificity 
(n/N) % OSCC OPSCC 

<50 
years 

3/3 (100 %) 
95 % CI [29.2 %, 
100.0 %] 

2/3 (66.7 %) 
95 % CI [9.4 %, 99.2 
%] 

4/5 (80 %) 
95 % CI [28.4 %, 
99.5 %] 

≥50 
years 

15/17 (88.2 %) 
95 % CI [63.6 %, 
98.5 %] 

62/73 (84.9 %) 
95 % CI [74.6 %, 
92.2 %]  

122/129 (94.5 %) 
95 % CI [89.1 %, 
97.8 %]  
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recruited from across the US and Australia, the positive cases were 
recruited from a single site in Australia. A larger multi-site validation 
including centres in the US is forthcoming and is expected to address 
most of these limitations. 

In summary, CDOT™ is a saliva-based detection test for oral cavity 
cancers and oropharyngeal cancers, with 94 % specificity and sensitivity 
of 90 % for OSCC and 84 % for OPSCC. The test performs RNA 
sequencing analysis and uses 270 human and microbial mRNA features 
as markers associated with oral and throat cancer. Our machine-learning 
based test was validated on an independent cohort of 230 patients. 
While future studies with a larger number of patients with pre malig-
nancies and other clinical characteristics are needed, the current method 
is a practically useful, non-invasive method that has the potential to be 
incorporated in dentist offices, primary care centres and specialised 
cancer clinics for early detection of oral and throat cancers. 
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