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The salivary metatranscriptome as an accurate diagnostic

indicator of oral cancer
Guruduth Banavar 1✉, Oyetunji Ogundijo 1, Ryan Toma 2, Sathyapriya Rajagopal2, Yen Kai Lim3,4, Kai Tang3,4,

Francine Camacho 1, Pedro J. Torres 1, Stephanie Gline1, Matthew Parks 1, Liz Kenny5, Ally Perlina2, Hal Tily1, Nevenka Dimitrova6,

Salomon Amar 6, Momchilo Vuyisich2 and Chamindie Punyadeera 3,4✉

Despite advances in cancer treatment, the 5-year mortality rate for oral cancers (OC) is 40%, mainly due to the lack of early

diagnostics. To advance early diagnostics for high-risk and average-risk populations, we developed and evaluated machine-learning

(ML) classifiers using metatranscriptomic data from saliva samples (n= 433) collected from oral premalignant disorders (OPMD), OC

patients (n= 71) and normal controls (n= 171). Our diagnostic classifiers yielded a receiver operating characteristics (ROC) area

under the curve (AUC) up to 0.9, sensitivity up to 83% (92.3% for stage 1 cancer) and specificity up to 97.9%. Our

metatranscriptomic signature incorporates both taxonomic and functional microbiome features, and reveals a number of taxa and

functional pathways associated with OC. We demonstrate the potential clinical utility of an AI/ML model for diagnosing OC early,

opening a new era of non-invasive diagnostics, enabling early intervention and improved patient outcomes.

npj Genomic Medicine           (2021) 6:105 ; https://doi.org/10.1038/s41525-021-00257-x

INTRODUCTION

Oral cancer (OC) is a major subtype of head and neck cancers
(HNC)1. Worldwide, there are an estimated 350,000 to 400,000

new cases of OC each year, and more than 150,000 deaths2. In
the USA in 2020, it is estimated that 53,500 people (~71% male)
will be newly diagnosed, and that there will be 10,860 deaths

(~73% male) from OC. That amounts to 145 new cases
diagnosed every day, and one person dying from OC every
hour. The overall 5-year survival rate for people with OC is 40%

and this figure has not improved in the past 40 years, resulting
in more cancer deaths when compared to melanoma and
cervical cancer in the USA3. However, if diagnosed at an early

stage, the overall 5-year survival rate is 84%. Unfortunately,
with today’s practices, only 29% of patients are diagnosed at
an early stage.
The cost effectiveness of targeted screening/early diagnostic

approaches (these terms, as well as “early detection” are used
interchangeably throughout this paper) has been supported by

the results from a simulation model study4. Currently, OC is hard
to detect in the early stages because of the lack of effective early
diagnostic tools, resulting in late diagnosis, leading to poor

prognosis and low survival rates5,6, with a significant impact on
the healthcare system. Major risk factors for the development of
OC are excessive tobacco smoking, alcohol consumption, and in

Asia, betel nut chewing. Tobacco use can include consuming
tobacco products by smoking, chewing, vaping, etc. OC risk
increases with age or a history of tobacco use7,8, and the increase

becomes more rapid after 50 years of age9. Only 2–4% of OC cases
are associated with human papillomavirus (HPV) infection. In
addition, OC commonly occurs in people without a history of

tobacco use or alcohol consumption, which argues that additional
environmental factors may lead to the development of OC.

Existing microbiological literature has established a significant
correlation between changes in the microbiome and cancer

phenotypes10,11. Perhaps the best-known association is of bacteria

(Helicobacter pylori) causing gastric ulcers that progress into

gastric cancer. In the last decade, multiple microbiome studies

using biopsies, tissue samples, and deep epithelial swabs taken

from OC patients have shown associations of certain microbes

with the development of OC. In previous studies, although there

were significant methodological variations in terms of type of

samples, technologies used for microbial analysis (16S rRNA gene

sequencing or shotgun DNA analysis), design and inclusion

criteria, some overlaps were observed at high taxonomic levels.

More recently, the notion has emerged that the microbial

association with OC is at the level of the microbial community’s

function, rather than at its composition12. Most intriguing, recent

evidence raises the possibility that changes in salivary microbiome

composition may have potential as biomarkers for detecting

HNCs13–17.
Visual and tactile screening, followed by laboratory testing and

clinical assessment remain the backbone of the current clinical

standard of care. A simpler alternative would be measurements

made from saliva samples. Saliva specimen collection is non-

invasive, straightforward, safe, painless; patients can collect

samples themselves. As with home-based stool sample collection,

we imagine that removing the need for professional healthcare

personnel for sample collection could lead to greater potential for

access as well as patient compliance compared to blood-based

methods18. Saliva is also a more stable and a less complex matrix

compared to blood and as such, is ideal for broad use19. Despite

all of these advantages of the use of saliva, an accurate method of

profiling the microbiome changes in saliva samples as an early

diagnostic indicator has not been developed to date that could
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generate the much needed clinical impact in this prevalent and

deadly disease.
Our overarching aim is to develop a simple, non-invasive,

and scalable method, with a classification algorithm that can
be used as an early diagnostic tool to address an urgent unmet
clinical need. We hypothesized that combining salivary
microbial transcriptome (metatranscriptome) profiling using

next-generation sequencing (NGS) technology with machine
learning (AI/ML) would allow us to develop a classifier that
could accurately discriminate premalignant/OC cases from
normal healthy controls. We have developed and validated

both state-of-the-art techniques for achieving accuracy and
robustness in our OC classifier: (1) NGS metatranscriptomic
analysis, which captures the microbial activity (RNA) within the

saliva sample in high resolution, and accurately identifies both
the microbial taxonomies as well as the microbial functions20,
and (2) analytical discovery of the metatranscriptomic signa-
ture associated with OC, using a model trained from a ML

algorithm.
To achieve the above objectives, we collected 433 saliva

samples and meta-data from 242 unique individuals, and divided
these samples into the cohorts described in Table 1 below. Using
these cohorts, we developed and evaluated classifiers for two
scenarios:

1. Screening for OC or oral premalignant disorders (OPMD)
within the high-risk population, i.e., 50 years or older, OR
with a history of tobacco use

2. Screening for OC only within the average-risk population,
i.e., general population across all backgrounds

While we provide the results for both scenarios, we highlight
the high-risk OC+OPMD screening scenario in the rest of the
paper, since this represents the largest unmet clinical need. Based
on our analysis and results across cohorts, the findings from this

study provide the foundation for a large multi-center clinical trial
to validate the effectiveness of the diagnostic classifier on the
populations of interest.

RESULTS

Cohort description

The goal of this study was to evaluate diagnostic performance of a

novel liquid biopsy on both a high-risk as well as an average-risk
population. Table 1 summarizes the participants in the cohorts
used in this study: Cohorts A and B represent the high-risk
population, defined as people aged 50 years or older OR with a

history of tobacco use (so a 55 year old never-smoker and a 25
year old smoker would both belong to these cohorts). Cohorts C
and D represent the average-risk general population.

● The goal of Cohort A (high-risk OC+OPMD discovery cohort)
was to support the primary use case of this study—to develop
a machine-learned classifier for early diagnosis in the high-risk
cohort, to analyze the features in the raw data (Fig. 1),
evaluate the classifier performance (Fig. 2 and Table 2), and
summarize the metatranscriptomic signature (Fig. 3). For this
objective, we included both OC and OPMD patients within the
positive “cases” category, as one would expect in a clinical
early detection or screening test.

● The goal of Cohort B (high-risk cross-validation cohort) was to
evaluate the performance of our approach by including an
additional 27 samples on top of Cohort A.

● The goal of Cohort C (average-risk OC only) was to develop
and evaluate a classifier for a broad general population, and
with only OC cases (i.e., without the premalignant OPMD
cases).

● The goal of Cohort D was to perform a technical validation
using samples from “presumed normal” individuals from the
general population, and to evaluate whether external inter-
ference factors (such as chewing gum, chewing tobacco, or
brushing teeth) influenced the metatranscriptomic analysis.

Descriptive statistics

Figure 1 summarizes a set of descriptive statistics to show the
differences in active species and KOs between the 58 cases and 59
controls in our study. Across all samples used in this study, we

Table 1. Study cohorts.

A: High-risk
OC+OPMD
discovery cohort

B: High-risk
OC+OPMD
cross-validation
(A+27 samples)

C: Average-risk
OC-only
(OC subset of A + 7
average-risk)

D: Average-risk
technical
validation

Total unique across
all cohorts

Number of participants 117 144 99 91 242

Controls 59 75 49 91 171

Cases 58 69 50 n/a 71

Number of samples total 117 117 from Cohort A+ 92 from Cohort A+ 282 n/a

Unique samples 117 27 7 282 433

Cases 58 69 50 n/a 71

Pre-malignant 10 14 n/a n/a 14

Malignant 48 55 50 n/a 57

Sex (% female) 37.6 37.5 40.4 38.7 38.8

Controls 54.2 50.7 57.1 38.7

Cases 20.7 23.2 24 n/a

Age (y) mean ± std 60.2 ± 11.3 61.4 ± 11.4 59.7 ± 12.6 22.6 ± 10.5 37.2 ± 21.7

Controls 56.3 ± 10 58.5 ± 11 56 ± 10.8 22.6 ± 10.5

Cases 64.1 ± 11.4 64.5 ± 11.1 63.3 ± 13.3 n/a

The 433 unique samples in this study (57 OC samples, 14 OPMD samples, and 362 cancer-free samples) are organized into 4 cohorts A, B, C, and D according to

the study goals. High-risk population is 50 years or older OR a history of smoking (current or past smoker). Average-risk population is the general population

across all backgrounds and histories.
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Fig. 1 Descriptive statistics of salivary metatranscriptome of the high-risk population (Cohort A in Table 1). a Species richness; control
median 463, case median 415 and function richness; control median 2306, case median 2205. b Shannon diversity index; control mean 2.25,
case mean 2.20; and Inverse Simpson diversity index; control mean 3.41, case mean 3.26. c Using Mann–Whitney U tests and at least twofold
difference in means (0.69 in CLR space), 139 differentially expressed species (at p < 0.05) up- or downregulated (red and blue respectively) in
cases relative to controls, organized by genus and phylum (median difference in CLR values); the size of the bubble is inversely proportional to
the p value. d Using Mann–Whitney U tests and at least twofold difference in means (0.69 in CLR space), 49 differentially expressed KOs
(at p < 0.05) up- or downregulated in cases relative to controls, organized by KEGG level-3 and level-2 functional groups; the size of each
triangle is inversely proportional to its p value e Clustermap using Euclidean distance of CLR transformed sum(transcripts per million) data for
active function (KO) features significant by Mann–Whitney U tests. Features are shown with corrected p values < 0.01 and median CLR
differences between the cohorts of greater than 0 or less than −1. KOs are color coded by their KEGG level-3 functional group.
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detected a wide range of unique active microbes (1587 active
species, sample mean 438 ± StD 81) and unique active functions
(4932 KEGG Orthologs or KOs, sample mean 2270 ± 314). As
shown in Fig. 1a, we observed a lower richness in cases compared
to controls, both in terms of active species and active KOs.
However, as shown in Fig. 1b, we do not see a statistically
significant difference (using Mann–Whitney U (MWU) test) in

diversity indices, such as the shannon index or the inverse
simpson diversity index between cases and controls. In general,
diversity measures both richness and evenness, and in this
dataset, although there is a lower richness in active species,
Pielou’s evenness index is not significantly different between
cases and controls (p value = 0.72). Overall, the ecological change
in decreasing richness in cases does not seem to be driven by a

Fig. 2 Predictive performance of machine-learnt classifier trained with discovery dataset (Cohort A in Table 1). a Distribution of classifier
output probabilities across the sample set. b Sensitivity & specificity tradeoff with 95% confidence interval computed using the Clopper-
Pearson method; at the default decision boundary of 0.5, sensitivity is 0.81 and specificity is 0.85. c ROC AUC of the classifier using the LOOCV
method is 0.87 (blue curve); using differentially expressed features only is 0.76 (orange curve). d Classifier probabilities separated by gender.
e Classifier probabilities separated by smoking status. f PCA analysis using top 100 features (PC1 and PC2 capture 10.2% and 6.3% of the total
variation, respectively.). g Probability of cancer output from the classifier for control samples with and without interference from chewing
gum, chewing tobacco, and brushing teeth.
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single dominating species. Figure 1c shows the up/down
regulation of the 139 significantly differentially active species

between cases and controls, grouped into 28 genera (p < 0.05,
MWU test). Each dot (circle) represents a species, all species on a
horizontal line are grouped by the genus on the left of the line,
and all genera in a given color are grouped by the phylum shown

at the bottom. We observed a downward shift, i.e., that 75.5% of
the species are downregulated in cases compared to controls. For
example, out of the 41 differentially active species from the

Streptococcus genus, 39 were downregulated, most of them within
2 units on the centered log-ratio (CLR) scale; the 27 species from
the Neisseria genus were all downregulated in cases, with many of
them at 4 units on the CLR scale. In contrast, 6 species from the
Rothia genus were upregulated in cases compared to controls.
Figure 1d shows the up/down regulation of the 49 significantly
differentially expressed KOs between cases and controls, grouped
into 30+ KEGG level-3 functional groups (p < 0.05, MWU test).
Each dot (triangle) represents a KO, all KO’s on a horizontal line are
grouped by the “level-3 KEGG function” on the left of the line, and
all level-3 KEGG functions in a given color are grouped by the
level-2 KEGG function shown at the bottom. We observed that
most of the microbial functions were downregulated in cases
(81.6%), compared to controls. Finally, Fig. 1e shows a visible
distinction between cases and controls using only the differential
expression of functions.
It is important to note that Fig. 1 presents a descriptive statistical

analysis of the 58 cases versus 59 normal controls. The differential
expression of individual features taken one-at-a-time without
interactions provides a level of insight into the raw data, but may
not necessarily result in the highest performing diagnostic model.
In the section below, we demonstrate that a linear regression
machine-learning approach provides a significantly higher diag-
nostic performance, as shown in Fig. 2c.

Predictive performance of the machine-learned (ML) classifier

Figure 2 depicts the clinical diagnostic performance of our trained
classifier within the discovery dataset (Cohort A, n= 117 in
Table 1), using the leave one out cross validation (LOOCV) method
described earlier. For each incoming validation sample, the trained
model outputs a probability that the input sample belongs to the
OC/OPMD class (cases). When this probability is above the clinical
decision threshold of 0.5, the sample is classified as OC/OPMD
(case), otherwise Not-OC/OPMD (control). We used the default

Table 2. Model performance for cohorts described in Table 1.

A: High-
risk
OC+

OPMD

B: High-
risk CV
OC+

OPMD

C: Average-
risk OC only

D: Average-risk
Technical
validation

ROC AUC 0.87 0.87 0.90 n/a

Sensitivity 81% 83% 76% n/a

Specificity 85% 79% 88% 97.9%

True positives by stage

OPMD 7/10 11/14 n/a n/a

OC Stage 1 12/13 11/14 12/14 n/a

OC Stage 2 11/16 12/17 11/16 n/a

OC Stage 3 1/2 2/2 2/3 n/a

OC Stage 4 13/14 18/19 10/14 n/a

For sensitivity and specificity, we used the standard default clinical decision

threshold of prediction probability= 0.5. Technical validation for the

average-risk cohort D was performed using the model developed for

Cohort A.

Fig. 3 Oral metatranscriptomic signature from the ML classifier trained with Cohort A from Table 1. Effect sizes (coefficient values within
the classification model) of 101 active species (circles) and 247 active KOs (triangles), grouped into curated Viome Functional Categories (VFC),
see ‘Supplementary Note 4’ section of the Supplementary Material; sizes of circles or triangles are proportional to the CLR median difference in
expression level between cases and controls.
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probability value of 0.5 for the clinical decision threshold, since it
minimizes loss on the training data, and has the advantage that it
balances sensitivity and specificity in general. Figure 2a shows the
probabilities output by our model for all samples in cross
validation. Our classifier results are bimodal with good separation
of cases and controls, and most data points have predicted
probability close to 0 or 1 with very few near the clinical decision
threshold. The sensitivity and specificity tradeoff with 95%
confidence interval is shown in Fig. 2b. At the clinical decision
threshold of 0.5, the sensitivity is 0.81 and specificity is 0.85.
Finally, Fig. 2c shows that our classifier has an ROC AUC of 0.87.
Note that a classifier constructed using only the differentially
expressed features shown in Fig. 1 (139 taxa and 49 KOs) performs
at ROC AUC of 0.76 (shown by the orange line in Fig. 2c).
Figure 2d illustrates that gender does not overly bias our

classifier. Figure 2e shows that smoking history also does not bias
our classifier. It detects non-smokers who have cancer, and it
detects smokers and ex-smokers who do not have cancer. Figure.
2f shows PCA clustering analysis of samples using the top 100
model features, which shows that non-cancer samples are
clustered together, providing evidence that the signature is
relatively stable. In addition, nine volunteers (from Cohort D in
Table 1) provided saliva samples with different potential
interferants, such as chewing gum, chewing tobacco, and
brushing teeth. Fig. 2g shows that the probability output of the
classifier does not change based on the presence of an interfering
substance, showing that our cancer classifier is robust. Taken
together, this data demonstrates that our model’s performance
and robustness is state of the art in the field16,21.
Table 2 gives a summary of the classifier performance for all

cohorts in Table 1. The larger high-risk cross-validation Cohort B
resulted in a similar performance as Cohort A. The cross-validation
performance for a model trained with Cohort C is higher than
Cohorts A & B since Cohort C consists of only OC cases without
any of the OPMD cases. Cohort D was evaluated with the
diagnostic model developed for the primary use case presented in
this paper for Cohort A (i.e., the model was trained only with
Cohort A, but evaluated with samples from Cohort D). The
purpose was to ensure that this model is still able to correctly
classify a general population, which was confirmed with a
specificity of 97.9% (276 true negatives and 6 false positives).
Additional details are in the ‘Supplementary Note 3’ section of
Supplementary Material.

Metatranscriptomic signature from the ML classifier

Figure 3 depicts the details of the features that drive our
predictive model. As described earlier, our “metatranscriptomic
signature” consists of 348 features (101 active species and 247
active functions) from the intersection of models built in each fold
of cross validation. Here, we introduce a curated set of pathway
and taxa categories called ‘Viome Functional Categories’ (VFCs)
that group all the features into 9 major biological themes
comprising 36 functional categories. These VFCs shed light on
some of the microbial activities and biological pathway mechan-
isms that are known to be associated with oral carcinogenesis. For
example, the functional category “Opportunistic Microbial Activ-
ities” consists of 3 features (1 taxon and 2 KOs) with a negative
effect in the classifier, and 9 features (5 KOs and 4 taxa) with a
positive effect. A brief description of the VFCs, the themes and the
features (taxa and KOs) constituting the themes are provided in
‘Supplementary Note 4’ section of the Supplementary Material.
The functional categories and features within ‘ProInflammatory

Activities promoting Carcinogenesis’, ‘Hydrogen Sulfide Produc-
tion’, ‘Cancer-specific Energy Metabolism and Utilization’, ‘Lack of
Protective or Detox Mechanisms’, ‘Reduced Microbial Nitrate
Utilization’, ‘Protein Fermentation’, and ‘Toxicity Burden’, are more
direct in terms of their association in oral carcinogenesis. This can

be seen by the presence of a greater number of features (taxa and
KO) that have a positive effect from the model in the
‘Opportunistic Microbial Activities’ and ‘Hydrogen Sulfide Produc-
tion’ and ‘Production of Carcinogenic Exotoxins’ themes. These
themes have already been implied in oral carcinogenesis22,23.
Amongst the other functional categories, the features are more
associated with general Oral Microbiome related Activities and are
more predictive of controls. The ‘Oral Commensals, Dental Plaque
Microbes’ constitute microbes such as commensal Streptococcus
sp. that are important in maintaining oral commensalism and
microbiome balance24. The functional categories that harbor
many features have a negative effect from the model include
pathways supporting normal cellular metabolism such as ‘Carbo-
hydrate Metabolism and Transport Pathways’, ‘Amino Acid
Production and Transport Pathways’, ‘Microbial Heat and Osmo-
larity Induced Stress Pathways’ and themes involved in cell
growth, such as ‘Ribosome Biogenesis’ and ‘Cell Wall and
Sporulation’.

DISCUSSION

The 5-year overall survival rate for all OC in the USA is 84% but
drops to 39–65% when diagnosed at an advanced stage
(percentage dependent on location and extent of metastasis)25.
Visual and tactile screenings are the foundation of the current
standard of care, usually performed by dental hygienists and
primary care physicians, which while being quick and easy, are
subjective (e.g., verbal questions about symptoms) and prone to a
high number of false negatives and false positives26. Research has
shown some of the reasons for late diagnosis, which is a layered
and complicated problem, including under-utilization of dental
and primary care, lack of and poor quality of screening in
individuals at a higher risk of developing OC and who do not seek
general care, and especially, the fact that in the earliest, most
treatable stages, many OC show few symptoms and may not be
visible26–31.
To get an approximation of the performance of the standard of

care, we used data from a meta-analysis of studies used in the
clinical assessment of OC32 using the standard of care techniques
described above (i.e., visual/tactile examinations). Walsh et al.
included ten studies in their review along with the assessment
methodology, sensitivity, specificity, population size and location
for each. We focused on studies that best reflected our sample
populations, i.e., predominantly white populations with a mix of all
other ethnicities. This resulted in four studies ([‘julien_95a’,
‘downer’, ‘julien_95’, ‘sweeny’]) from the UK and the USA with a
combined total of ~2500 participants. We then took a weighted
average for sensitivity across the four relevant studies, weighing
the metrics by study population size. This yielded a sensitivity
value of 0.717 and specificity of 0.989. The diagnostic system
presented in this paper yields a sensitivity of 83% for our
validation Cohort B, and a specificity of 97.9% for our largest
sample set of 282 samples in Cohort D. This establishes that the
work presented in this paper is superior to the current standard of
care, and we continue to improve this performance with ongoing
studies.
Several adjunct diagnostic tools are available to aid providers in

identification and diagnosis of OCs33, such as brush cytology34,35,
toluidine blue staining36, and light-based visual detection
systems37. The use of these tools varies among providers, and
currently, none of the available tools has been studied sufficiently
to prove that their use improves the sensitivity and specificity of
the current standard of care physical exam38,39. The work
presented in this paper addresses these issues in the standard
of care. We introduce a method which has non-invasive and easy
sample collection using saliva rinse, coupled with an objective and
robust classification algorithm with high sensitivity and specificity
to distinguish between control samples and OC samples.
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There has been interest in investigating either individual
bacteria or shifts in microbiome composition and their potential
association with different stages of cancer development, since the
classification of Helicobacter pylori as a causative agent for
stomach cancers. In addition, there have been many published
studies on the potential association between changes in the
microbiome (mainly at the metagenomics level) and cancer. Even
though microorganisms have been implicated in 15.4% of human
malignancies, there is a dearth of knowledge regarding the role of
bacteria in the development and progression of OC. Conventional
differential expression analysis reported by existing studies40

shows statistical differences in microbial features between cases
and controls in cancer tissue, but no study has yet presented a
microbiome-based predictive classifier using a non-invasive saliva-
based sampling method. Furthermore, while the majority of
microbiome studies to date have focused on microbial taxonomy
(due mostly to the limitation of DNA sequencing), we used a
combined taxonomic and functional analysis (metatranscrip-
tomics) and demonstrate that microbial functions make important
contributions to our model. This is not unexpected, since the
biological activity (of mechanistic relevance to OC biology) is the
result of active gene expression, and not just genetic potential
encoded by DNA.
In this study, we have used both taxonomic profiling and

functional profiling to develop a diagnostic classifier based on AI/
ML using salivary metatranscriptomic data. We have detected a
wider range of unique active microbes (1587 active species,
sample mean 438 StD 81) and unique active functions (4932 KOs,
sample mean 2270 ± 314) than previous studies, making it feasible
to comprehensively profile bacterial functions (KOs). Our AI/ML
diagnostic classifier is effective in identifying individuals who are
at high risk of developing OC, starting with premalignant lesions/
OPMD (Cohort A in Table 1), which is the largest unmet clinical
need in this space. For this cohort, cross validation of our
diagnostic classifier yielded an ROC AUC of 0.87, sensitivity of 0.81
and specificity of 0.85. For a narrower use case such as Cohort C
which includes only OC cases, our ML model achieves ROC AUC
over 0.9. A secondary technical validation using 91 healthy
individuals (Cohort D) yielded a sensitivity of 97.9%. To the best of
our knowledge, our classifier has the best diagnostic performance
published currently.
We have observed a lower richness, both in terms of active

species and active KOs in saliva samples analyzed from cases
compared to controls (Fig. 1a), corroborating with a previous
study by ref. 40 using salivary metagenomic analysis. In contrast,
another study revealed much greater diversity of bacterial
communities in OC samples41. Our study shows that several
genera such as Streptococcus, Haemophilus, and Actinomyces
downregulated as does Yang’s work42; although some genera
like Fusobacterium does not appear to be differentially expressed
in our analysis. Our high throughput metatranscriptomic technol-
ogy can detect features (strain-level taxa as well as KOs for
functional activity) at a much finer granularity compared with 16S
techniques used in Yang’s work20,43. Nevertheless, this level of
concordance with prior work is highly encouraging. We have also
detected at the genus-level high amounts of periodontal bacteria
Fusobacterium, Prevotella and Porphyromonas in saliva samples
from OC and OPMD, confirming previous findings44. Furthermore,
we believe that our model is specific to OC and does not overlap
with other common conditions such as canker sores, since there is
negligible overlap (two species) between the features of our
signature and the microbial signature discovered by Kim45.
Among the ProInflammatory Activities promoting carcinogen-

esis, we identified several species of pathobionts from Porphyr-
omonas, Treponema, Fusobacterium, and Streptococcus genera and
their raffinose, stachyose, and melibiose transporters, as previously
reported46–48. This theme also captured two Porphyromonas
species and one microbial KO shown to produce proinflammatory

mediators49,50 and eight KOs that are involved in biofilm
formation and virulence51,52. Protein Fermentation and polyamine
metabolism are known to be associated with tumorigenesis by
mediating oxidative damage to the host cells53, we report protein
fermentation and ammonia-producing KOs as predictors of OC54–56.
Five toxin-generating KOs that produce benzaldehyde, arsenite,
and other carcinogenic metabolites also contribute to the
pathogenesis of OC22,23,57.
Species-level taxonomic classifications were essential for

identifying relevant taxa that are predictive of the phenotype.
This is clearly depicted in Figs. 1c and 3, where several genera
contain multiple species and that make opposite contributions to
the model. This is an important observation, as there are many
literature reports that show genera as contributing to a
phenotype. In reality, that finding may be driven by certain
species within the genera, but other species may have the
opposite effect. Therefore, genus-level analysis can lead to false
results of a test, depending on the specific species present in a
sample.
Our approach improves on previous functional methods by

revealing not simply differential expression and functional
categorization, but more importantly, mechanisms that integra-
tively connect predictive gene-encoded active functions along
with active microbes to relevant biological themes characteristic
of OC. Understanding the systems biology level perspective
revealed by our ML model can take us one step closer to
developing not only diagnostic but also future therapeutic
strategies to address this disease.
Ideally, the diagnostic classifier developed in this study would

be used clinically as an early detection/screening tool for a high-
risk population (adults of either sex 50 years or older OR those
with a history of tobacco use). A positive result may indicate the
presence of either OPMD or OC and should be followed by, for
instance, a detailed physical examination and/or a biopsy by an
appropriate medical practitioner (dental surgeon, ENT specialist,
etc). Due to the simple, efficient and non-invasive nature of the
saliva collection procedure, it is unlikely that such a prediction
model will cause any potential adverse effects. The primary risk
associated with this prediction model is the possibility of a false
prediction (i.e., a false-positive or a false-negative result). All
positive test results will need to be followed by a physical
examination of the patient. In a situation where the system
presented here produces a false-negative result, there is a chance
that a case of OC could go undetected, but this risk is no greater
than what exists under the current standard of care (visual/tactile
examination by a medical practitioner).
The main contribution of this paper is a diagnostic system that

addresses an unmet clinical need for early detection of OC
(including premalignant cases) in high-risk populations (people 50
years or older OR with a history of tobacco use). Our system uses
(a) a simple, non-invasive, saliva sample (b) high throughput NGS
metatranscriptomic lab analysis, and (c) a machine-learned
diagnostic classifier that accurately discriminates between cases
and controls. We show that this system can identify high-risk
OPMD/OC patients vs. normal healthy controls with ROC AUC of
0.87. When restricted only to OC patients at average risk, our
classifier achieves ROC AUC over 0.9. We demonstrate a system
that effectively improves upon the current standard of care
globally, opening a new era of non-invasive diagnostics, enabling
early intervention and improving patient outcomes.
Our method is based on extracting high-resolution metatran-

scriptomic (RNA) functional and taxonomic features from saliva
samples (rather than genus-level 16S or metagenomic/DNA
features), which represents gene expression of active microbial
functions in the sample. Second, rather than performing a
differential expression analysis of each feature as in most current
literature, we perform a machine-learning analysis that captures
the inter-dependencies among the thousands of features within
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the processes and allows us to predict the probability of a cancer
signature in a sample. This allows us to identify and connect the
most important predictive features that represent active microbial
functions along with active microbes to relevant biological themes
characteristic of OC. While the results in this discovery study are
encouraging, and the method used extracts a meaningful signal
with reduced overfitting, we recognize the limitations of the
number of samples in the current study, and plan to perform a
large multi-site study to validate the signature on a broader scale.
Overall, we believe that the AI/ML-based diagnostic classifier

developed and validated in this study opens a new era of non-
invasive diagnostics, enabling early intervention and improving
patient outcomes, while significantly reducing healthcare costs.
Once an early diagnostic test is available at scale, we can routinely
improve the accuracy of our test as we collect more “real-world
evidence” to further train our machine-learning models. This
enables de novo discoveries that will have a great impact and
open a new era of precision medicine.

METHODS

Study cohorts

For Cohorts A, B, and C, we recruited 71 newly diagnosed treatment-naive
patients with OC and OPMD, and collected a saliva sample from each of
them at baseline. In addition, we collected 362 saliva samples from 171
non-diseased individuals across all cohorts shown. The exact inclusion and
exclusion criteria are described in the ‘Supplementary Note 1’ section of
Supplementary Material. Based on histopathological reports, the clinical
stages of patients with OC were classified based on the cancer staging
system of the American Joint Committee on Cancer58. All patients in
Cohorts A, B, and C were HPV negative based on a PCR-based test of their
saliva59.
This study was approved by the Queensland University of Technology

and University of Queensland Medical Ethical Institutional Boards (HREC
no.: 1400000617 and HREC no.: 2017000662 respectively) and the Royal
Brisbane and Women’s Hospital (HREC no.: HREC/12/QPAH/381) Ethics
Review Board. Written informed consent was obtained from all participants
and all of the methods in this study were performed in accordance with
the relevant guidelines and regulations.

Sample collection and laboratory analysis

Laboratory analysis of the saliva samples was similar to the metatran-
scriptomic method designed for large-scale population analysis of stool
samples as described previously20 (summarized in Supplementary Fig. 2 in
the Supplementary Material) and included sample collection, ambient
temperature sample preservation, total RNA extraction, physical removal of
ribosomal RNAs, preparation of directional Illumina libraries, and Illumina
sequencing. The stability of the RNA stabilizer was tested for up to 28 days
at ambient temperature, including shipping. (More details in Supplemen-
tary Figs. 2 and 3 in Supplementary Material).

Bioinformatics processing

Paired-end reads were mapped to a catalog of 53,660 microbial genome
assemblies spanning archaea, bacteria, fungi, protozoa, and viruses. (We
downloaded the complete genomes available in NCBI Reference Sequence
Database and used the GenBank sequence database for viral genomes.)
Strain-level relative activities were computed from mapped reads via the
expectation-maximization (EM) algorithm60. Relative activities at other
levels of the taxonomic tree were then computed by aggregation
according to the taxonomic rank. Relative activities for biological functions
were computed by mapping paired-end reads to a catalog of 52,324,420
microbial genes, quantifying gene-level relative activities with the EM
algorithm, and then aggregating gene-level activity by KO annotation61.
The identified and quantified active microbial species and KOs for each
sample were then provided to the OC classifier. (More details are in the
‘Supplementary Note 2’ section of Supplementary Material).

Descriptive statistical analysis

Standard statistical analyses described below were initially performed to
analyze the differential expression of active microbes and active functions

between the 58 cases and the 59 healthy controls in Cohort A (Fig. 1). The
data were transformed using the CLR transformation62 after imputation of
zero values using multiplicative replacement63. We used the two-sided
MWU test (p < 0.05 after Benjamini–Hochberg correction for multiple
comparisons) and at least twofold difference in means (0.69 in CLR space).
It is important to note that this is a descriptive statistical test to analyze
features independently for differential expression without taking into
account the interactions among features and is thus not suitable for the
machine-learning classification method (below).

Mapping KOs to functional categories for presentation

For Fig. 1, the Python module “Bio.KEGG” was used to take as input the KO
name and return KO hierarchy at three different levels (level-1 to level-3).
For Fig. 3, VFCs, each KO and taxa feature from the ML model was analyzed
in the context of expert-assessed directional pathway mechanisms or
biologically characterized taxonomic microbial groups (see ‘Supplementary
Note 4’ section of Supplementary Material). Subsequently, the VFCs were
summarized into broader biological themes based on literature and their
relevance to carcinogenesis or OC progression as described in the
Discussion and the ‘Supplementary Note 4’ section of Supplementary
Material.

Machine-learning (ML) classifier development and cross-
validation

The OC binary classifier was trained using the appropriate number of
samples from the population in the cohorts described in Table 1. Each
sample was annotated as a case (OC or OPMD) or control. The molecular
data (microbial species and KOs) derived from the metatranscriptomic
analysis of the saliva samples were used as input features for training. For
this study, we chose a logistic regression (LR) model since it performs well
and is easily interpretable. In particular, we used l2 regularized LR with a
regularization parameter of 1, implemented in scikit-learn64. This choice
was motivated by low model complexity as protection against overfitting.
We used “LOOCV” to validate both feature selection and model

performance. It is conventionally held that in k-fold validation, as k
approaches N (i.e., approaches LOOCV), estimator variance decreases due
to increasing number of observations and aggregation over a greater
number of folds but increases due to increasing nonindependence of the
data comprising each fold (e.g.65). Due to the small sample size relative to
the number of active microbes and functions, we took precautions to
ensure that the features we present are robust to random variation in the
data. The following procedure was used:

● To begin with, the features in our molecular data consist of all
detected active microbes (1587 species) and functions (4932 KOs).

● Data were transformed using the CLR method62. Features with
variance less than 25th percentile of the variances of all features
were removed as part of data pre-processing and 533 active microbes
and 2216 active functions were used for the remaining analysis.

● For each fold of the LOOCV method, we performed feature selection as
follows. Bootstrap sampling of each training set 1000 times provided
the sampling distribution of all LR coefficients. We considered features
where the 95% CI of this distribution did not cross zero to be
significant at p < 0.05, and used these to estimate the model in each
iteration of the LOOCV procedure.

● To obtain a final model for the purposes of follow-on validation or
clinical use, we fit an LR model with the 348 features (101 active
species and 247 KOs) at the intersection of the models built in each
fold of cross validation. This is a conservative choice made to select the
features consistently selected across cross validation, and therefore
reduce overfitting. We call these 348 features used in the final ML
model the metatranscriptomic signature of OC.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

This research was sponsored by Viome and the authors of the paper who have access

to the data are employees or scientific collaborators of Viome who have signed

contracts with Viome to be bound by Viome’s privacy policy and access restrictions.
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The sample data and feature matrix for the main discovery cohort (Cohort A) has

been made available at figshare, at https://doi.org/10.6084/m9.figshare.13244243.

Additional data can be made available through a Data Transfer Agreement that

protects the privacy of participants’ data; interested researchers may request at

https://www.viome.com/vri/data-access. The information provided by interested

researchers on the dataset request form will be used to generate a Statement of

Work (no fee SOW) and a Data Transfer Agreement (DTA). The DTA protects the

privacy of the participants’ data, and the SOW outlines the planned use of the

summary statistics. The SOW and DTA will need to be signed by your institution first,

and then Viome, before data can be shared. If you are collaborating with

investigators at multiple institutions and those institutions must also receive copies

of Viome summary statistics, please have a PI from each institution fill out the form to

ensure all parties receive access to datasets within a similar timeframe. Finally, please

note that each signed SOW and DTA allows use of Viome data only by the signatory

institution and its personnel. Each institution that wishes to access or use Viome data

must have a signed SOW and DTA covering their access to Viome data. Once a valid

SOW and a valid DTA are signed off, Viome will transfer data to the researcher for use

in the research project described in the SOW.

CODE AVAILABILITY

For the oral cancer classifier, we have used standard algorithms such as logistic

regression to derive the main results in this research. The major parameterization

decisions (e.g., L2 regularization) have been described in the “Methods” section.

Statistics and Machine-Learning software was written using standard Python libraries

such as scikit-learn, pandas, and numpy.
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